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BENDING, VIBRATION AND BUCKLING OF SIMPLY
SUPPORTED THICK ORTHOTROPIC RECTANGULAR
PLATES AND LAMINATES
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Department of Aeronautical Engineering, Indian Institute of Science, Bangalore 12, India

Abstract—This paper presents a unified exact analysis for the statics and dynamics of a class of thick laminates.
A three-dimensional, linear, small deformation theory of elasticity solution is developed for the bending, vibration
and buckling of simply supported thick orthotropic rectangular plates and laminates. All the nine elastic constants
of orthotropy are taken into account. The solution is formally exact and leads to simple infinite series for stresses
and displacements in flexure, forced vibration and “beam—column™ type problems and to closed form characteristic
equations for free vibration and buckling problems. For free vibration of plates, the present analysis yields a
triply infinite spectrum of frequencies instead of only one doubly infinite spectrum by thin plate theory or three
doubly infinite spectra by Reissner-Mindlin type analyses. Some numerical results are presented for plates and
laminates. Comparison of results from thin plate, Reissner and Mindlin analyses with these yield some important
conclusions regarding the validity and effects of the assumptions made in the approximate theories.

NOTATION
a,bh length, width and total thickness
E an elastic modulus used in defining 1
. 12{b\?P,
k, buckling stress parameter = — |- =
n*\h] E,

. . d
differential operator ~—

L
dzZ

M,N mnh/a, nnh/b

PP normal stresses on the edges x = 0,aand y = 0, b

P, critical buckling stress when plate is loaded on edges x = 0,a only

XYz x/a, y{b, zfh

i cigenvalue = /Q?ph?/E in vibration problems

= /(P,M?*+ P,N?/E in problems with normal edge loads

o mass density
Q angular frequencies—forced or free
thin plate theory val
9% error j piate y vale —— 1% x 100
1va]ue by present exact analysis

For laminated plates
Subscriptj (j=1,2,..., p) denotes corresponding ply

i
H; ( ) hi) / h
i=1
P number of plies

B modular ratio between top and middle plies of a three-ply laminate {with identical top and bottom
plies and also identical relative moduli within each ply)

= Ex|/Exz = Ex;/Exz
Figure 1 indicates the coordinate system and the dimensions
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Orthotropic stress-strain relations [11]:

e, [F F, E. 0 0 0 e,
z, F, F, F, 0 0 0 g,
bR F. F,, F Q 0 0 a.
Yer | = | 0 0 0 /G, 0 0 Tyy
Yz 0 o 0 0 HG,. 0 Tyz

Py | 0 0 0 0 Q LGy it 1,

or ) )
e, [E. Ey E. O 0 0 ¢,
[ E, E, E, 0 0 0 £,
g, E. E. E 0 0 0 €,
Wl 1o o o 6, 0o ofn,
Tyz 0 0 0 0 G, 0 Vs
| % | 0 0 0 0 0 G.fl .
INTRODUCTION

THIN plate theory is based on several assumptions, the most important of which are the
neglect of transverse shear deformations and rotatory inertia. The errors in such a theory
naturally increase as the plate thickness increases. Further, due to the neglect of transverse
shear deformations and ¢,, one cannot take into account all the 9 elastic flexibility con-
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FiG. 1. Coordinate system and dimensions.
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stants of orthotropy. Consequently, the errors increase as the magnitudes of the transverse
elastic constants (F,, F,,, F,,, 1/G,,, 1/G,;) increase relative to the in-plane constants

(F., F,, F,,, 1/G,,). So, it is natural to seek some improved formulations which account, at
least approximately, for transverse shear deformations and rotatory inertia. Reissner {1]
and Mindlin [2] initiated such analyses by their modified plate theories for flexure and
vibration of isotropic thick plates. They start with the standard thin plate assumptions for
variation of stresses (or displacements) across thickness, but include the resulting transverse
shear deformations and rotatory inertia. Both these analyses permit satisfaction of three
boundary conditions on each edge, but they do not satisfy the governing differential
equations of three-dimensional elasticity exactly. Medwadowski [3] extended Reissner’s
theory to orthotropic plates. Yang et al. [4] have developed a Mindlin-type analysis for
heterogeneous plates or laminates with general anisotropy and elastic moduli varying
continuously across each ply. They have also presented numerical results for plane waves.
Whitney [5] has provided another analysis for anisotropic laminates taking into account
transverse shear deformations; he does not presume linear variation of displacements u
and v across thickness. Several other papers relevant to anisotropic laminates are published
in Ref. [6].

The next obvious step is to seek an exact analysis by three-dimensional theory of
elasticity. This was recently achieved for certain plates and laminates of isotropic materials
[7-10]. The current interest in thick laminates made up of orthotropic layers, indicates
that a three-dimensional analysis for the statics and dynamics of thick laminates made up
of general orthotropic plies would be useful. In this paper such an analysis is developed
for simply supported rectangular plates and laminates. Flexure, forced and free vibrations,
and a class of buckling and beam-column type of problems, are all treated together.

In the analysis herein, the boundary conditions for a simple support on a straight edge,
x = const., are specified as,

w=0 v=0 and g, =0forallz {n

The combination of edge conditions in equation (1) amounts to providing an edge support
infinitely rigid in its own plane {w = 0, v = 0 on x = const.), but completely flexible to
out of plane stresses (o, = 0, for x = const.). In case of plates under normal edge loads,
equation (1) refers to the quantities arising out of deviation from the original state of uniform
strain.

For a homogeneous plate, the solution is set up in the form of a double trigonometric
series in Cartesian coordinates, [vide equation (4) to follow], for each of the displacements
u, v, w such that the governing differential equations and all the edge conditions are identi-
cally satisfied. The terms corresponding to each harmonic in the series contain six arbitrary
constants and these are explicitly obtained by solving six simultaneous equations, which
result from satisfying the appropriate lateral surface conditions.

The analysis for laminates is a direct extension of that for a homogeneous plate ; each
ply is treated as an individual homogeneous plate and, at the interface between any pair
of plies, a set of six homogeneous conditions representing equilibrium and continuity must
be satisfied. In a p-plied laminate, there are 6p arbitrary constants corresponding to each
harmonic, ie. each combination of m and n, and these are explicitly derived by satisfying
all the relevant lateral surface conditions.

A special feature of this analysis is that all homogeneous surface conditions (which
include the interface conditions in laminates) are satisfied identically.
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In the eigenvalue problems of free vibration or buckling, a closed form characteristic
equation (in determinant form, of order 6p) is obtained for each combination of m and n.
Each such equation yields an infinite number of eigenvalues, each one of them representing
a different ““thickness mode™. The first of these is generally referred to as a “flexural mode™
and it is only this mode which thin plate theory can identify and yield approximate resuits
for. In many buckling problems one of the flexural modes is the primary mode of instability.

In thin plate theory, only w(x, y) is given freedom. In Mindlin’s, du/0z(x, y) and dv/0z(x. v}
and in Reissner’s, M (x, y) and M (x, y) are also given freedom. In the present exact analysis
u,v,w at every point are given freedom. Correspondingly for free vibration, thin plate
theory, Reissner-Mindlin analyses and the exact solution respectively yield one, three and
an infinite number doubly infinite sets of eigenvalues.

As the number of variables in orthotropic plates or laminates is large, detailed study of
the effects of individual variables on the physical aspects of the problems, or on the errors
due to thin plate assumptions, are not undertaken ; but some broad conclusions are drawn
from the numerical results for an example of orthotropy. The properties of this material
are listed in Table 1. Some numerical results are also presented for three-ply laminates
with identical top and bottom plies; the relative values of the moduli are the same in all
the plies, i.e. (E,:E,:E.:E, :E  :E, :G,,:G,. :G,.) are identical.

TABLE !. ORTHOTROPIC PROPERTIES ASSUMED IN EXAMPLES

E,/E, = 0-343103 EJE, = 0530172
E, /E, = 023319 E_/E. = 0010776
E,./E, = 0098276 G, /E, = 0262931
G /E, = 0159914 G,./E, = 0-26681

These properties correspond to Aragonite
crystals [11].

GOVERNING EQUATIONS OF THREE-DIMENSIONAL ELASTICITY

The equations of equilibrium in terms of displacements for a homogeneous orthotropic
plate can be written in Cartesian co-ordinates as

62 52 62 02 («},2
i - S Eo 4G )
Ex6x2+GxYay2+GXZ azz (EXY+GxY)ax 6_)1 ( xz+ xz)ax ﬁZ
62 62 62 az 32
(Exy+ny)m nyé?+Eyz)}—2+Gyzgz—2 (Eyz+Gyz)5y‘é_Z”
0* a2 d? o2 a2
7 L 6, T 46, tE
L Bt G“)ax oz (Eye + G’Z)ay oz *0x? +Gy dy? + 0z% ]
u
x|v|+{f}={0} (2)

W
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where . .
{0} is a (3 x 1) null matrix, and {f} is a (3 x 1) matrix.
Further,
(a) {f} = {0} with no body forces;
®) {f} = —p{i & w} for motion with no body forces other than inertia forces,

(—plitd w} = pQ*{uvw}, for simple harmonic oscillations with frequency Q);

(¢) {f} = F{uvw}, for general applied stresses on edges; F is a function of local
stresses in the initial state and second order differential operators.
(F = —(P, 8*/0x*+ P, 3*/0y*)for an initial state of uniform strains &,,¢,and g, = 0.
In homogeneous plates this corresponds to uniform applied normal edge stresses
P.onx=10,aand Pyony=0,b].

Conditions (a), (b) and (c) can be applied together.

SIMPLY SUPPORTED RECTANGULAR PLATES

The edge boundary conditions for a simply supported rectangular plate may be specified

as:
Onx=0anda; 6,=0, w=0 and v=0, )
Ony=0andb; 6,=0, w=0 and u=0.

This set of edge conditions is identically satisfied by choosing u, v, w in the following form ;

u P(Z)cos mnX sinnn¥

vi=hY % |y(Z)sinmnX cosnnY @
m=1inp=1

w 2(Z) sin mnX sinnnY

where ¢, ¥ and y are pure functions of Z. Considering simple harmonic oscillations and
uniform applied normal edge stresses, substitution of equation (4) in equation (2) yields
for each combination of m and n,

d+d,L* dy dL re
d3 d5+d5L2 d';L Ejl == {0} (S)
""d4L "d’yL ds “!"‘dng x

where,

L denotes the operator §~,
4

dy = EX*~EM*~G,N% d,=G,, ds= ~(E;;+ G, )MN,

dy = (E;+G )M, ds=EX-EN*-G M? ds= G,.,

d; =(E,;+GN, dy=EN*-G,M*~G,N*  dy=E,;

A% = 0, if the plate is static and also free of body forces (6a)
= Q%ph*/E, for simple harmonic oscillations (6b)

= (P.M*+P,N*)/E, for uniform applied normal edge stresses, P, on x = 0, a and
Poony=10,b (6¢)
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For non-trivial solution of the homogencous equation (5), the determinant of the (3 ~ 3
matrix on its left hand side must be zero. This yields
dydg do(LPY +{dg di +dy d3 +dy do dy+dy dg do+dy ds doW LY
Hdsdi—2dydyd,+d d2+d, dgdg+d, ds dg+d, ds dy—d? do)L*
+dgld, ds—d3) = 0 (7

for each combination of m and n. The six roots of this equation define the six values of 1.
and correspondingly there are six arbitrary constants A?(i = 1,2,....6). Each arbitrary
constant AY is associated with an eigenvector {¢™y?¢}. The eigenvectors depend on the
multiplicity of the roots and a procedure for finding them is discussed in [13]. The eigen-
vector corresponding to a non-repeating root L = ¢ is

d4(.‘(d5 -+ dﬁ(.'z)"‘c (13 d—;
dicld, +dye*y—cdyd, |Ae
—{d; +dr*Wds+dec?)+ d}

where A 1s an arbitrary constant. The sum of the six eigenvectors corresponding to the six
roots gives the total expression for ¢, ¢ and y:

¢ #7

1<
gb - Z lp{i) 40 (8\}
¥ = 2

Using the stress-strain relationships (given in the notation) the following expression for
stresses are obtained. .

—Ede) - ExyNw + Esz){
—E M¢p—~ENY+E, Ly |sinmnX sinnnY
P x x - Ex:M¢ —E zN‘a&’ + E:LX

-3 ¥ g - )

Tep m=1n=1) G (N +My)cos mnX cosnnY
Tyz G AMy+ Ld)cos mrX sinnrnY

T,, | GyANy+ L) sinmrX cos nY

The set of six arbitrary constants for each (m, n) in ¢, ¥ and y is used to satisfy the six lateral
surface conditions.

As mentioned earlier, extension of this analysis from homogeneous plates to laminates
is straightforward. Equations (4){9) are valid for individual plies, the appropriate quantities
for the jth ply being indicated by subscriptj (j = 1,2,...,p).

LATERAL SURFACE CONDITIONS

If the top and bottom surfaces are subjected to normal and shear stresses g, (x, v},

Gz (%, V), Gy (X, ¥) and q,,(X, V), 4.2, (X, V), 4,2, (x, V) respectively, (they can be either static
loads or amplitudes of forcing functions with frequency Q), then the lateral surface conditions
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to be satisfied are:

for homogeneous plates;

at Z=0, g, = qh(xv y)) Ter = szt(xs Y)a Tyz = Qyz,(xs y} (]Q)
at Z=1, o, = qzb(xa y)a Tyz = qxzb(x’ ,V), Ty = qyzb(xe J/),
for laminates;
at Z = 0’ Gz; = th(x’ y)’ sz; = qxzt(xv }’)» Tyzl = qyzt(xﬁ y},
at Z = 1’ GZP = qzh(x'f y)? szp = qxzb(xs y)v T)’zp = Qyzb(xa }")9
and at interfaces Z = H(j = 1,2,...,p—1),
equilibrium conditions
02j~62j+l = szj“tx?f}w] = ryz,-—“tyzjﬂ = 0
and continuity conditions
Uj—tjey = 0" Dpey = Wi=Wiyy =0 (11)
The loadings are best expressed in double Fourier series,
i qzﬂ i Q.. ., Sin muX sin nny |
Gz, Q... cosmnX sinnnY
45z, © o 10 sinmnXcosnn¥
=X x|, . . (12)
4., m=tina=1}Q,  sinmnXsinnnY
Gz, Qrzyn COS maX sin nny
9y, 0,2y SID MAX cos nnY

Then, satisfaction of the lateral surface conditions, equations (10} or (11), leads to a set of 6p
simultaneous equations for each combination of m and n. These can be put in the following
form.

(a) For homogeneous plates;

e
szt,mu
[R(O)]] Dizern

A = ,

[[R(l)] 4} 2y n )
szb,mu
| Doz |
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{b) For three-ply laminates;

[ 0. ]
O,
CROY, (0] o] 0.
R, ~RED O | 0
[SH)) —ISE). [0 [ 0 |
O -REL R || T "
0] ~[SGL) IS, | 0
U [0 [ROL | oo
Quro
-

(¢) For multi-ply laminates;
Equation (14) is extended in a straightforward manner and symbolically,

[C1{B} = {Q} (14a)

where [C] is a square matrix made up of [R], [S] and null matrices, {B} is a column matrix
consisting of {4},’s, and {Q} is the load matrix.
In the foregoing equations,

(A}, = {ADA® o gen
LI C R
RZ); = | JO J> g
KW K® . K@),

J
I = (~E,,M¢~E, Ny +E,Ly)"
JO = (G [My+ L))
K@ = (G,,[Ny+Ly])®,

P P $®
(S = (7 ¥@ Y

D @ 2 |
and [0] is a (3 x 6) null matrix. In the above equations, superscripts denote the correspond-
ing eigenvectors and subscripts the corresponding plies. It is simple to modify equation (13)
or (14) to include any displacement conditions on the extertor lateral surfaces.

In non-homogeneous problems, i.e. in those problems for which the right hand side of
equation (13) or (14) is not zero, results can be evaluated by summing infinite series whose
individual terms are known explicitly by solution of equation (13) or (14}, to the desired
accuracy by retaining sufficient number of terms. In case of homogeneous problems the
determinant {order 6p) of the square matrix on the left hand side of equation (13) or (14)
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must be zero and this is the characteristic equation for the corresponding (m, n) combina-
tion.

PLATE UNDER UNIFORM NORMAL STATIC LOAD ON TOP SURFACE

Consider a plate loaded only on the top surface by an uniformly distributed normal
static load g, so that,

16q,
= ,mand n odd
Qron =1y mand n

= 0, mor neven (15)

szt,mn = Qyzt,..m = sz,mn = szb,mn = Q)’Zb,mn =0

The scheme for computation is:

(i) Determine the roots of equation (7) for each ply, for each (m, n).

(i) Find the eigenvectors, taking into account any multiplicity of roots.

(iti) Solve equations (13) or (14) for each (m, n) to determine the arbitrary constants.

(iv) Sum the series (4) and (9) for the displacements and stresses, retaining sufficient
terms to achieve the desired degree of accuracy.

Numerical results are presented in Tables 2-4 for a homogeneous plate and a
three-ply laminate whose material properties are indicated in Table 1. In Table 2, exact,
Reissner and thin plate [12] values of 6, naxs Oy maxs Txzmax 30d Wy, are given for homo-
geneous plates with a/b = 0-5, 1 and 2, h/a = 0-05, 0-1 and 0-14. In Table 3, the o,, o,
7. and w distributions across the thickness for a 14 per cent thick homogeneous square
plate are given. In Table 4, effects of modular ratio between plies () are presented for three-
ply square laminates with identical top and bottom plies.

The following observations can be made from the data in Tables 2-4.

(i) Thin plate theory underestimates maximum deflection. The errors in both maxi-
mum stresses and maximum deflections predicted by thin plate theory, increase as plate
thickness increases. Deflections are more inaccurate than stresses.

(ii) Even for quite thick plates Reissner’s theory predicts the deflections almost exactly,
but for stresses it does not appear to be distinctly superior to thin plate theory.

(i) Thethin plate and Reissner’s direct stress distributions across thickness (Table 3) are
only slightly different from the true distributions.

(iv) Modular ratio between plies has significant effect on the errors in thin plate theory
for laminates. Mostly errors increase with increasing moduli of outer plies.

It was also observed that the number of terms needed to maintain a given level of
accuracy increases as plate thickness increases. To maintain 0-1 per cent accuracy, homo-
geneous square plates with h/a = 0-05, 0-1 and 0-14 require retention of terms up to
m(=n) = 25, 87 and 167 respectively. That is, the significance of the higher harmonics of
loading increases with increasing thickness. Finally, from Table 3 one confirms that the
mid-surface is not really a neutral surface.

FREE VIBRATION

In this case the exterior lateral surfaces are stress free and therefore,

ta,m,. = szt,mn = Qyzt,mn = sz,mn = szb,mn = Qyzb,m,. =0 (16)
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TARLE 2. DEFLECTIONS AND STRESSES IN HOMOGENEGL S

E wihy, a.q,
) f’_-;, error L BETOF
: Present ) ) Thin in thin Present Thin in thin
hja exact Reissner’s plate plate exact Reissner’s plate plate
analysis theory theory values analysis theorv theory  values
005 —21,542 - 21,542 -21.201 - 1-58 26267 26207 26326 -l
010 - 14085 - 1408-4 — 13251 - 592 65975 65-379 65504 —{h62
0-14 —387.23 —387.27 ~344.93 =~ 1092 33862 33265 1x451 - 12
afiow
005 —10,443 —10,442 - 10,246 -~ -89 i44-31 143.87 144-39 006
0-10 — 68857 —688-37 —640.39 - 7-00 36021 35-578 36098 024
0-14 — 19107 —191-02 — 16670 -~ 1275 18-346 17906 18417 034
aifr =
05 —2048.7 —2047-9 — 19881 ~2:96 40-657 40-477 40-860 050
0-10 - 13908 —138:93 — 12426 - 10-66 10-025 9.8460 10-215 190
0-14 —39:790 - 39753 -~ 32:345 — 1871 50364 4.8603 520118 348

4o normal stress on top surface {z = 0); w: deflection of central point (X = Y = Z = (:3); 6, and ¢, normal
stresses at centre of top surface (X = Y = 05, Z = 0); r,, : shear stress at centre of anedge (X = 0. ¥V = Z = 05,
elastic moduli are as per Table 1.

Substitution of equation {16) in equation (13) [or (14)] makes the latter homogeneous and
for non-trivial solution of the problem, the determinant of the square matrix (6p x 6p) on
the left hand side must be zero. For each (m, n), simultaneous solution of this characteristic
equation along with equation (7) yield an infinite number of frequencies, each correspond-
ing to a different thickness mode.

Typical numerical results are presented in Tables 5-8. In Table 5 the first 8 exact eigen-
values along with the 3 by Mindlin’s theory (x* = 5/6) and one by thin plate analysis are
given for mh/a = 0-1, 02,...,0-5 and nh/b = 01, 0-2,...,0:5. In Table 6, the stress and
displacement distributions across thickness for a homogeneous plate are given for
mh/a = nh/b = 0.3. Table 7 gives the relative magnitudes of maximum siresses and dis-
placements for antisymmetric thickness modes. In Table 8 the flexural mode eigenvalues
for various f’s are tabulated for three-ply laminates with identical top and bottom plies.
From the data obtained the following observations are made.

(i) It is confirmed that thin plate theory frequencies are higher than true values.
The errors increase with increasing mh/a or nh/b.

(ii) For homogeneous plates, all the 3 eigenvalues given by Mindlin’s theory are close
to the corresponding exact values.

(iii) Thin plate and Mindlin’s stress and displacement distributions across thickness
are significantly different from the true distributions. For the flexural modes the deviations
increase with mh/a or nh/b.

(iv) Complexity of the stress and displacement distributions across thickness increases
for higher order thickness modes.
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ORTHOTROPIC PLATES UNDER UNIFORM SURFACE LOAD

5)\/‘?0 lxz/‘?o
%, error % error
Present Thin in thin Present Thin in thin
exact Reissner’s plate plate exact Reissner’s plate plate
analysis theory theory values analysis theory theory values
G-5
79-545 79-337 79-121 —0-53 - 14048 14-114 -14.154 075
20204 20001 19-780 —2:10 ~6-9266 ~ 70611 — 71328 298
10515 10:312 10092 —4.02 —4.8782 — 50445 —5-1050 465
10
87-080 86921 86-487 -~ 0-68 ~10-873 —10-864 -10972 091
22210 22:048 21622 —2:65 ~5-3411 — 54267 —5.5642 418
11615 11453 11031 —503 ~37313 ~3-8741 —3.9860 683
20
54-279 54134 53-838 —0-81 - 6.2434 — 62191 —6-4175 279
13-888 13743 13460 —3.08 - 29573 ~30524 —3.2402 9-57
7-2794 7-1358 6-8671 —5-66 - 1-9987 21428 —2-3175 1595

{v) As the order of the thickness modes increases, the influences of transverse stresses
increase.

{(vi) Modular ratio between plies has significant effect on the error in flexural frequency
due to thin plate assumptions and this error increases with increasing moduli of outer
plies. Density ratios have only slight effect for small m and n.

TABLE 3. VARIATIONS ACROSS THICKNESS IN HOMOGENEOUS ORTHOTROPIC PLATES UNDER UNIFORM NORMAL LOAD
ON TOP SURFACE

W(Z)/w(0-5) 6,(Z)/o,{0) 0,(2)/0,(0) 1A2)/2,405)
Thin plate Thin plate Thin
VA True Thin True and True and True plate and
distribution  plate distribution  Reissner  distribution  Reissner distribution Reissner
theory theories theories theories
0 10000 10 1-0 10 10 10 0 0
o1 10003 10 0.7849 08 47914 0-8 0-4992 0-36
02 10007 1-0 0-5801 06 0-5888 0-6 0-7325 0-64
03 10007 1.0 0-3832 04 0-3906 04 0-8%06 0-84
04 10004 1-0 0-1914 02 0-1954 02 0-9789 0-96
0-5 10 10 ~ 00023 0 —-00016 0 1-0 1-0
-6 0-9994 1-0 —0-1869 -02 —0-1921 —0-2 0-9540 0-96
0.7 09986 1-0 ~0-3786 —04 ~-0:3874 —0-4 0-8388 084
a8 09976 10 —-0-5755 —0:6 —0-5856 - (-6 0-6492 064
0.9 0-9964 10 - 0-7803 —0-8 —0-7882 —0-8 0-3758 0-36
1.0 0-9945 10 -0-9954 -10 —0-9968 - 1.0 0 0

Variations of w, s, and o, along X = ¥ = 0-5and 1, along X = 0, ¥ = 0-5. Elastic moduli are as per Table 1.
a/b =1, hja = 0-14.
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TaBLE 4. DEFLECTIONS AND STRESSES IN THREE P

Present exact analysis

5 10 13 I

p=E,JE,, 1
WE . /h, —688-58 — 25897 ~ 15938 ~121.72 -640-39
(’x/‘lo :
Top ply at top surface 36-021 60-353 65-332 66-787 36:098
qu ply at interface 28-538 46-623 48-857 48299 28-878
Mid ply at upper interface 28-538 9-3402 4.9030 3.2379 28-878
Mid ply at lower interface —28454 —9.2845 —4-8600 —3.2009 -~ 28-878
Bottom ply at interface --28-454 —46-426 —48-609 ~48-028 - 28-878
Bottom ply at bottom surface —35-937 - 60-155 —65-083 —66-513 - 36-098
oo
Top ply at top surface 22:210 38491 43.566 46-424 21622
Top ply at interface 17-669 30-097 33413 34.955 17-297
Mid ply at upper interface 17-669 61607 3-4995 2-4941 17297
Mid ply at lower interface —17-631 —6-0574 —3-3669 ~2-3476 - 17:297
Bottom ply at interface —17-631 —30-322 -33.756 —35-353 — 17297
Bottom ply at bottom surface —22:172 — 38715 --43.908 - 46821 - 21-622
T
At upper interface -~ 2:4029 -37194 - 39285 - 3.9559 - 20034
At mid surface —5-3411 —4-3641 —4-0959 - 39638 - 55642
At lower interface - 19826 —-3-2675 —~ 35154 —3.5768 - 2003}

go: normal stress on top surface (z = 0); w at centre X = ¥ = /7 =05, 0, and g, on A = Y = 0:5 and
1, 0on X =0, Y = 05; elastic moduli of all plies as per Table 1. Top and bottom plies are identical. h, 4 = 0-1,
hy/h = 0-8,a/b = 1, hja = 0-1.

BUCKLING

The problem of buckling of simply supported-homogeneous plates is formally identical
ro that of free vibrations, except that the eigenvalue 1 should be interpreted according to
equation (6¢) instead of equation (6b), as for example in Table 5. As already stated, only the
flexural mode eigenvalues are of significance in many buckling problems. The present
analysis can be directly extended for laminates which are initially in a state of uniform
strains &,, ¢, and o, = 0 throughout. Otherwise, a three-dimensional analysis of the initial
state will be involved and also the governing differential equation will be complicated by the
presence of variable terms (local stresses). The required initial state of uniform direct strains
can be realised in experiments by compressing by pairs of smooth rigid edge blocks moving
towards each other without rotation. This initial state is equivalent to one of direct stresses
P, P, uniform within and on the edge of each ply, such that the quantities (F, P, +
F,, P, ), (Fy, P, +F, P, ) are independent of j. In thin or moderately thick laminates, small
deviations from this condition at the edges, can be ignored by invoking Saint-Venant's
principle and the present analysis can still be applied to obtain satisfactory results.

Numerical results are presented in Fig. 2 and Tables 9 and 10 for plates and laminates
loaded by stresses P, on sides x = 0 and a only. As such, (F, P, ) and (F,, P, ) are the same
for all plies. In other words, {F, /F, } are the same for all plies and (P, :P,: ..) =
(1/F,, :1/F,:...). The least buckling stress P, .., for any given plate dimensions and m is
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ORTHOTROPIC LAMINATES UNDER UNIFORM SURFACE LOAD

Thin plate theory % error in thin plate theory

5 10 15 i § 10 15
—21694 -~ 11877 —81-768 ~ 700 —1623 —25-48 ~32.82
61141 66-947 69-135 021 131 2:47 3.52
48.913 53.557 55.308 1-19 491 9-62 14.51
57826 53557 3.6872 1-19 474 923 13-88
—5.7826 —5.3557 -~ 36872 1-49 536 1020 15-19
—48913 —~53-557 ~55-308 1-49 536 10-18 15-16
—61-141 ~66:947 —~69:135 045 1-64 2-86 394
36622 40099 41-410 —2:65 —4.86 —~796 -~ 10-80
29.297 32079 33.128 —~2:11 —2:66 -399 -523
5-8595 3.2079 2-2085 —211 —4-89 —833 ~11-45
—5-8595 - 32079 - 2:2085 —1.89 —327 —-4.72 -~ 593
—29-297 ~ 32079 - 33.128 —1.89 —~3-38 —4.97 ~ 629
—36-622 - 40099 -41-410 —2:48 —541 —8-67 ~11-56
- 3.3860 - 37075 —3.8287 —~1664 — 896 — 563 ~3.22
—4.5899 —4-3666 ~4.2825 418 517 6-61 8-04
—3.3860 —3-7075 - 3.8287 103 363 5-46 704

realised with only n = 1. For a given h/b, the buckling stress parameter k, achieves a
constant value for all integral values of a/b, and the corresponding m = a/b. That is, when
a/b is integral the plate buckles into square panels. This value of k, is also its asymptotic
value.

In Fig. 2 the buckling stress parameter k, is plotted against a/b for various h/b’s. In
Table 9 the asymptotic values of the buckling stress parameter k, are given for homogeneous
orthotropic plates with h/b = 0.05, 0-1 and 0-2. In Table 10, the asymptotic value of k, is
given for three-ply laminates. From these data the following observations on buckling of
orthotropic plates and laminates may be made.

(i) Thin plate theory gives optimistic values for the buckling stress, the errors increas-
ing rapidly as the thickness increases.

(i) Mindlin theory can yield accurate buckling stresses even for thick homogeneous
plates.

(i11) Modular ratio between plies has significant effect on the errors in buckling stress
due to thin plate type assumptions. The errors increase as moduli of outer plies are in-
creased.

The stress and displacement distributions are similar to those of the corresponding
flexural mode in vibration.

CONCLUDING REMARKS

An exact three-dimensional unified analysis has been established for the bending,
vibration and buckling of simply supported, thick, orthotropic, rectangular plates and



1476 S. Srinivas and A. K. Rao

Tapre 5. EIGENVALUES fOK FREE VIRE 8 10

Exact analysis

mh nh
- " 1-A 1-5* j1-S Ti-4% 14 s
01 01 004742 0-21697 0-39405 1.3077 16530 2
01 02 0-10329 0-34501 0-56242 13331 {7160 2
0t 03 0-18881 0-49530 076004 13765 18115 2
01 0-4 0-29690 0-65190 0-96901 1-4372 19306 2
01 0-5 042124 0-81071 11825 1-5133 20664 2.
02 01 0-11880 0-35150 067278 £-4205 1-6805 2
02 02 0-16942 0-43382 0-78796 14316 17509 2.2
02 -3 0-24753 0-55201 0-94433 1-4596 185223 2
02 04 34755 0-68957 11231 1-5068 1974y 2.
02 05 0-46428 0-83699 1-3142 15719 21122 N
03 01 021804 0-50291 097278 15777 17334
03 02 0-26244 0-56047 10573 13651 18193
03 03 0-33200 0-65043 111814 13737 1-978Y
03 04 042242 0-76415 1-3321 1-6049 20546
03 0-3 0:52956 0-89360 1-4994 1-6366 21923
0-4 0.1 033189 0-65908 12795 17179 1-854%
04 02 0-37066 0-70277 1-3453 1-6940 19447
04 03 043225 077334 1-4463 16923 20534
0-4 0-4 0-51342 0-86667 1-5736 17129 21763
0-4 05 061092 0-97769 17197 17542 2226745
05 0 0-45265 0-81720 {-5890) 18056 20667
05 02 0-48680 0-85223 16425 17974 2134 ¢
03 03 0-54160 0-90962 17266 £.7999 2.228% 3.7 354
05 04 061465 0-98732 g1g7 18350 2.239411 2.344 200
03 03 0-7033% 1-0824 1-85594-4 19596 2.2468HH- 2466814

* Pure thick- twist modes.

V/PXL,H“MZ/EI for buckling under uniform normal edge stresses P, on x = 0 and «.

4 and § denote modes which are antisymmetric and symmetric about mid-plane respectively.

laminates. The solution is in series form and each term in it is explicitly defined by a set of
simultaneous equations. Thus it is easy to sum the series to any desired degree of accuracy
in non-homogeneous problems like plates under static or dynamic loads on lateral surfaces,
while in homogeneous problems like free vibration or buckling from a state of uniform
strain closed form characteristic equations are obtained 1o define natural frequencies or
buckling stresses. This type of solution was made possible by the choice of v = 0, instead of
7., = 0, as one of the “simple” support conditions along the straight edge x = const.
In fact equation (4) is only one of the twelve sets of series providing the general sotution {14}
of the governing differential equation. If the condition 1., = 0 is to be satisfied the series in
equation (4), should be augmented by additional series. Then the terms are no longer
explicitly determinable nor is the characteristic equation in closed form. There is consequent
loss of elegance and simplicity and enormous increase in computation. An example of an
isotropic square plate has been worked out {14] to examine whether the two modes of
defining a simple support would lead to significantly different results. The v = 0 condition
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AND BUCKLING OF HOMOGENEQUS PLATES

Mindlin’s analysis

Thin plate %, error in

theory thin plate
[v-s* v-$ I-4 11-4* 11-4 1A values
2:5479 32636 0-04740 1-3159 1-6646 0-04967 474
2:5604 33043 0-10317 1-3411 1-7305 0-11200 844
25824 3-3678 0-18839 1-3841 1-8306 021537 1407
26145 34497 0-29588 1-4445 1-9560 0-35993 2123
26565 3.5458 0-41927 1-5204 21001 0-54574 29-56
2-6264 3.2760 0-11873 1-4285 1-6921 0-13538 13.95
26334 33179 0-16918 1-4393 1-7655 0-19866 17:26
2-6481 33828 0-24692 1-4671 1-8715 0-30289 22:37
26727 3-4661 0:34628 1-5142 2:0002 0-44802 2891
27081 3-5633 0-46201 1-5792 21456 0-63418 36-59
277383 32967 021776 1-5857 1-7450 0-27789 2745
27392 3.3409 026192 1-5727 1-8341 034176 30-22
27457 3.4085 0-33101 1-5813 19480 0-44699 3464
27614 34942 0-42066 1-6127 2:0796 0-59313 40-41
27882 3-5933 0-52671 1-6648 22250 078011 4731
2.8756 33261 0-33110 1-7266 1-8657 047734 43.82
28695 33743 0-36955 1-7022 1.9587 0-54152 4609
2-8668 3-4463 0-43056 1-7006 2:0716 0-64750 4980
2.8730 3.5356 0-51084 17218 22003 0-79466 54.78
2:8905 36373 0-60716 1-7638 2.3419 0-98269 60-85
30334 3-3648 0-45087 1-8150 20770 0-73374 62-10
30174 3-4204 0-48463 1-8067 21475 0-79809 6395
30040 3.4991 0-53877 1-8095 22459 0-90459 6702
30000 35931 0-61083 1-8292 2:3639 10526 7125
30082 36979 0-69828 1-8665 24965 1.2416 76-52

is found to predict smaller central deflections, lower by 7-4 per cent, and 9-4 per cent for
10 per cent and 14 per cent thick plates.

The effect of thin plate assumptions is to increase the stiffness of the structure and there-
fore yield lower deflections, higher flexural frequencies and optimistic buckling stresses.
The errors increase as the thickness increases, and in vibrations, also with increasing order of
the mode as m or nincreases. In laminates the modular ratios between plies have very signifi-
cant effects on the errors due to thin plate type of assumptions and these errors increase
with increasing moduli of outer plies. In vibrations thin plate theory yields only one doubly
infinite spectrum of frequencies.

In orthotropic plates, the errors due to thin plate assumptions depend strongly also on
the extent of orthotropy, i.e. the relative values of various elastic moduli. The errors in thin
plate theory increase as the relative magnitudes of transverse elastic flexibility constants
(F,,F.., F,;,1/G,;, 1/G,;) increase relative to inplane constants (F,,F,, F,,,1/G,,). In
isotropic plates, it was possible to define a “thin plate”. For example tolerating 1 per cent
inaccuracy, a plate could be called ““thin” if it is under 5 per cent thick when subjected to
uniform loading or when {(mh/a)*+(nh/b)*} < 1/250 for free vibrations [7, 8]. Because of
the large number of parameters involved, it is rather difficult to define the term “thin” for
orthotropic plates.
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TABLE 6. VARIATIONS OF STRESSES AND DISPLACEMENTS ACROSS THICKNESS FOR A FIOM Mo S Bon 5 QR FIG 000
PLATE IN FREE VIBRATION

7 Oy a, [P T Ty: iz b
) ,(0) 0.,(0-4) 1,0 105 7,05 ey o) vt
(a) Thin plate theory and the three thickness-modes of Mindlin's theory

0 1-0 1-0 10 0 0 Rt 143 13
01 0-8 0-8 0-8 0:36 0-36 K -8 -4
02 06 0-6 - 0-6 0-64 0-64 0-6 0-6 1-(
03 04 0-4 0-4 0-84 0-84 0-4 04 i
04 02 0-2 0-2 0-96 0-96 02 02 1-0)
0-5 0 0] G 1-0 [0 0 i L0

{b) Exact theory
First antisymmetric thickness mode (I-A)
0 1-0 1.0 0 10 O 0 1-0 1-0 IRy
0-1 07134 0-7539 1-5685 0-7360 0-3943 0-3835 0-6963 0-7644 1-0054
0-2 0-4871 0-5396 20482 0-5163 0-6738 0.6632 0-4650 0-5532 1-0083
0-3 0-3028 0-3479 1.7657 0-3278 0-8595 (18534 0-2838 0-3595 1-0096

0-4  0-1450 0-1704 10 0-1591 0-9655 0-9638 0-1343 0-1770 [-0102

0-5 0 0 0 0 {0 By 0 0 10103
Second antisymmetric thickness mode (11-.4)

0 1.0 1-0 0 1-0 0 1-0 IRY [RY

0-1 09511 0-9509 1-3346 -9512 0-3090 §-3090 09511t 09510 16-658
02 0-8090 0-8088 1-8798 0-8092 (-587% (13878 0-8090 0-8089 30-755
0-3 0-5878 0-5875 1-7099 0-5880 (8G90 (8090 0-5878 (-5877 41927

0-4 0-3090 0-3089 1-0 0-309] Q051 09511 0-3090 03090 49.095

05 0 0 0 4 0 10 0 0 S1-563
Third antisymmetric thickness mode (111-A4)

4] 1.0 1-0 0 1-0 ¢ 0 1-0 IR IR

0-1 0-9837 0-9516 1-3098 09789 0-2942 0-3021 09922 0-9721 0-90.25
0-2  0-8573 0-8111 1-8614 0-8501 0-5719 0-5804 0-8698 0-8399 07710
03 06333 0-5905 1-7037 0-6263 0-7992 0-8045 0-6450 0-6167 (-643y

0-4 0.3361 0-3109 i-G 0-3320 0-9482 9497 0-3431 03262 05531
0-5 0 0 0 i) 10 -0 0 0 05206
[/\l t ye
First symmetric thickness mode (1-S) 7,(0-2) 7,:(0-2)
0 1-0 -0 0 [-0 §] 8] 1-0 10 i
01 0-9790 1-0130 0-3868 10415 0-7609 07614 0-9890 10074 08112
0-2 0-9636 1-0228 0-6777 10723 1-0 1-0 09811 10131 06148
03 09533 1-0297 0-8804 1-0925 0-8661 0-8656 0-9757 10170 04129
04 09472 1-0337 1-0 11060 0-4919 0-4915 09727 10194 (-2073
0-5 0-9453 1-0350 10395 11101 0 0 09717 10202 {1
Second symmetric thickness mode (I1-5}
0 1-0 1.0 o} -0 U U 1-0 {4 1-(
01 1-0077 1-0062 0-3602 10091 0-7241 0-7336 1-0073 10520 08362
0-2 1-0139 1-0114 0-6526 1-0165 1-0 1-0 1-0131 1-0221 ()-6489
03 1-0184 1.0152 0-8680 10220 0-8968 0-8887 1-0173 1-0296 0-4431
0-4 10211 1.0176 1-0 1-0254 0-5197 0-5122 1.0199 10342 0-2248
0-5 1-0221 1-0184 1-0444 10265 0 0 1-0208 i-0358 0

Elastic moduli as per Table 1 mhja = nh/b = 0-3.

The improved approximate theories like Reissner’s and Mindlin’s are good even for
quite thick plates for specific purposes. For example, Reissner’s theory predicts deflections
accurately, while Mindlin’s theory yields accuracte frequencies for the first 3 antisymmetric
thickness modes of free vibrations.
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TABLE 7. RELATIVE MAGNITUDES OF MAXIMUM STRESSES AND DISPLACEMENTS FOR ANTISYMMETRIC THICKNESS MODES
OF HOMOGENEOUS ORTHOTROPIC PLATES IN FREE VIBRATION

a’y‘max az,max txy.max rxz.max Tyz,max umax vmax
Ox,max O, max Ox,max O x,max Ox,max Wnax Wiax
Thin plate theory (I-4) 0-6142 0 04272 0-2932 0-2023 04712 04712
Mindlin’s theory
Thickness mode I-4 0-7693 0 0-4937 0-3306 0-2644 0-2290 0-3550
Thickness mode 11-4 00174 0 0-1563 04716 03906 4027 18-93
Thickness mode III-4 0-4804 0 0-3698 1-032° 0-5694 6-908 4.160
Exact theory
Thickness mode I-4 0-7278 00301 0-4759 0-2827 0-2290 0-2677 0-3727
Thickness mode 1I-4 0-0565 0-0002 0-1396 0-6128 0-5355 4162 22-26
Thickness mode I11-4 0-8624 0-1657 0-5336 0-4407 1-310 1-898 3-680

mh/a = nh/b = 0-3.

TABLE 8. FLEXURAL MODE EIGENVALUES FOR FREE VIBRATIONS OF THREE-PLY
ORTHOTROPIC LAMINATES

Density 9 error in
ratio f=E_/E., Exactvalue Thin plate thin plate
P/P2 value value

1 1 0-047419 0-049666 4.74
1 2 0-057041 0-060584 621
1 5 0-077148 0-085333 10-61
1 10 0-098104 0-115328 17-56
1 15 0-112034 0-138994 24-06
3 15 0-094548 0-117471 2425

Elastic moduli of all plies as per Table 1. Top and bottom plies are
identical. h;/h = 0.1, h,/h = 0-8, mh/a = nh/b = 0-1. Eigenvalue =
Q./p,h*E,,.

8
|
— Qa bee—| X
X} b 3
AsYMPTOTIC L- 7
6}———h/b  VALUES ‘L
0 3.039,ALSO THIN PLATE
K : ANALYSIS NEGLECTING
x h/b EFFECTS
005 2.966 | f
010 2770
41— b }__v
{020 2210 ‘
e o - -45‘
—N‘
2
0 1 2 3 4

a/b
FiG. 2. Variation of buckling stress parameter k, with h/b and a/b for plate loaded on x = 0, a.
k, = (P, /E)(12/n?)(b/h)*.

crm
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TABLE 9. ASYMPTOTIC k, FOR BUCKLING OF HOMOGENEOUS ORTHOTRO¥I¢
PLATES UNDER UNIFORM NORMAL STRESS P, ON EDGES x = {) AN o

YL error in
hib Exact Mindlin’s  Thin plate  thin plate
theory theory theory values
0-05 2:966 2:963 3039 2.46
0-1 2.770 2768 3039 Y. 71
02 2:210 2:204 3-039 375

. 12r, (b\°
Elastic moduli as per Table 1. k, = "(h) .

TABLE 10. ASYMPTOTIC k, FOR BUCKLING OF THREE-PLY
ORTHOTROPIC LAMINATES FROM AN INITIAL STATE OF
UNIFORM STRAIN

7, error in
I Exact value  Thin plate  thin plate
value value

1 2.770 3039 9.7
2 3-330 3.768 13-2
5 4.046 4.984 23.2
10 4.200 5-852 393
15 4.037 6263 55.1

Elastic moduli of all plies are as per Table 1. Top
and bottom plies are identical.

ﬂ = E,n/’E.\J = Ex;"E.x‘:

= PonE, =123
k. = 12pb/h)’ in?
hyh =01 hyh =08 hb =01

Thus, a three-dimensional elasticity solution is necessary when both stresses and
displacements are required in non-homogeneous problems or for establishing the full
spectrum of modes in free vibrations. The analysis presented here is for general orthotropic
laminates with arbitrary properties for each ply, except in buckling when the relative elastic
moduli must be identical for all the plies. Analysis of sandwich plates with core having only
shear rigidity is a special case of the above analysis. Tetragonal, cubic and isotropic materials
are special cases of orthotropic materials and the present analysis is applicable.
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Afcrpakt—laercs oObEIMHEHHBIA TOMHBIA AHAIM3 CTATHKM ¥ IMHAMHKA HEKOTOPOTO KAACCA TONCTHIX
CHOHUCTHIX MNACTHEOB. BIBOBUTCA TPEXMepHad, MHHCHHAN TEOPHS MaIbiX AedopMaluil, B PAMKAX TCOPHH
yrnpyroctd Ans u3rudba, xonebauul ¥ NOTEpH YCTOMYMBOCTH, CBOGOAHO ONEPTHIX TONCTHIX OPTOTPOMHBIX
IPSMOYTO/IBHBIX TUTACTHH M CAOMCTHIX TTACTHKOB. PelueHue sABiseTc GOPManbHO TOYHBIM U TPHBOIMT
K HECJOXKHBIM GecKOHEYHBIM PAJAM Ul HANPAKEHUH W NepeMelleHHi npH m3rHOe, BLIHYKAEHHBIM
KonebapusaM M 3asavaM Tuna ‘‘Ganka-konoHHa’’. IIng cBOGOAHBIX Xe xoeGaumil M 3amau yCTONYMBOCTH
pelieHue NPHUBOAMT K XapakTepHCTHYECKMM YPaBHCHMAM B 3aMKHYTOM Buae. B ciyuae cso0ombix
xonebanuil MIACTHHOK, NMpefiaracMeill ananu3 aaer TpoNHbIl GecKOHEHHBIN CTIEKTD AJIA 4aCTOT, BMECTE
TONABKO AOBOHHOTG OECKOHEYHOTO CHEKTPa, B PaMKaX TEODHM TOHKHX IJIACTHHOK WM TPEX ABOHHBIX.
GecKOHeyHBIX CIEKTPOB NpH ananuie tuna Peiicchepa u Munmmna. Jns roiactal ¥ CIOMCTBIX MUTACTHKOB
DAKTCH HEKOTOPBIE YHCIEHHBIE Pe3YNbTaThi. CPAaBHEHHE PE3YJIbTATOB TEOPHH TOHKKX IIACTHHOK M TEOpUEH
PeiiccHepa 1 MMHAIKHA C PE3YIBTATAMH NPEITOKEHHBIME B Pa0OoTe KAaeT HEKOTOBIE BAXHPBIE 3aKIIOUEHUS
OTHOCHTEJIBHO BAXHOCTH M 3)DEKTOB NMpeanoToXeH i, CAeNAHHbIX B NPHOIHXEHHBIX TEOPHAX.



