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BENDING, VIBRATION AND BUCKLING OF SIMPLY
SUPPORTED THICK ORTHOTROPIC RECTANGULAR

PLATES AND LAMINATES

S. SRINIVAst and A. K. RAot

Department of Aeronautical Engineering, Indian Institute of Science, Bangalore 12, India

Abstract-This paper presents a unified exact analysis for the statics and dynamics of a class of thick laminates.
A three-dimensional, linear, small deformation theory of elasticity solution is developed for the bending, vibration
and buckling of simply supported thick orthotropic rectangular plates and laminates. All the nine elastic constants
of orthotropy are taken into account. The solution is formally exact and leads to simple infinite series for stresses
and displacements in flexure, forced vibration and "beam-column" type problems and to closed form characteristic
equations for free vibration and buckling problems. For free vibration of plates, the present analysis yields a
triply infinite spectrum of frequencies instead of only one doubly infinite spectrum by thin plate theory or three
doubly infinite spectra by Reissner-Mindlin type analyses. Some numerical results are presented for plates and
laminates. Comparison of results from thin plate, Reissner and Mindlin analyses with these yield some important
conclusions regarding the validity and effects ofthe assumptions made in the approximate theories.
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normal stresses on the edges x = 0, a and y = 0, b
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eigenvalue =~ in vibration problems

= j(PxM2 + PyN 2)/E in problems with normal edge loads
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value by present exact analysis

For laminated plates

Subscriptj (j = 1,2, ... , p) denotes corresponding ply

(,tl hi) / h
number of plies
modular ratio between top and middle plies of a three-ply laminate (with identical top and bottom
plies and also identical relative moduli within each ply)
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Figure 1 indicates the coordinate system and the dimensions
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Orthotropic stress-strain relations [II]:
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INTRODUCTION

THIN plate theory is based on several assumptions, the most important of which are the
neglect of transverse shear deformations and rotatory inertia. The errors in such a theory
naturally increase as the plate thickness increases. Further, due to the neglect of transverse
shear deformations and (J'z' one cannot take into account all the 9 elastic flexibility con-

y
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FIG. I. Coordinate system and dimensions.
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stants of orthotropy. Consequently, the errors increase as th'e magnitudes of the transverse
elastic constants (Fz' Fm Fyz ' l/Gxz ' l/Gyz) increase relative to the in-plane constants
(F F F I/G) So it is natural to seek some improved formulations which account, atx' y' xy" xy • ,
least approximately, for transverse shear deformations and rotatory inertia. Reissner [IJ
and Mindlin [2J initiated such analyses by their modified plate theories for flexure and
vibration of isotropic thick plates. They start with the standard thin plate assumptions for
variation of stresses (or displacements) across thickness, but include the resulting transverse
shear deformations and rotatory inertia. Both these analyses permit satisfaction of three
boundary conditions on each edge, but they do not satisfy the governing differential
equations of three-dimensional elasticity exactly. Medwadowski [3] extended Reissner's
theory to orthotropic plates. Yang et al. [4J have developed a Mindlin-type analysis for
heterogeneous plates or laminates with general anisotropy and elastic moduli varying
continuously across each ply. They have also presented numerical results for plane waves,
Whitney [5J has provided another analysis for anisotropic laminates taking into account
transverse shear deformations; he does not presume linear variation of displacements u
and v across thickness. Several other papers relevant to anisotropic laminates are published
in Ref. [6].

The next obvious step is to seek an exact analysis by three-dimensional theory of
elasticity. This was recently achieved for certain plates and laminates of isotropic materials
[7-10]. The current interest in thick laminates made up of orthotropic layers, indicates
that a three-dimensional analysis for the statics and dynamics of thick laminates made up
of general orthotropic plies would be useful. In this paper such an analysis is developed
for simply supported rectangular plates and laminates. Flexure, forced and free vibrations,
and a class of buckling and beam-column type of problems, are all treated together.

In the analysis herein, the boundary conditions for a simple support on a straight edge,
x = const., are specified as,

w = 0, v = 0 and (Ix = 0 for all z (1)

The combination of edge conditions in equation (1) amounts to providing an edge support
infinitely rigid in its own plane (w = 0, v = 0 on x = const.), but completely flexible to
out of plane stresses «(Ix 0, for x = const.). In case of plates under normal edge loads,
equation (1) refers to the quantities arising out ofdeviation from the original state ofuniform
strain.

For a homogeneous plate, the solution is set up in the form of a double trigonometric
series in Cartesian coordinates, [vide eq uation (4) to followJ, for each of the displacements
u, v, w such that the governing differential equations and all the edge conditions are identi
cally satisfied. The terms corresponding to each harmonic in the series contain six arbitrary
constants and these are explicitly obtained by solving six simultaneous equations, which
result from satisfying the appropriate lateral surface conditions.

The analysis for laminates is a direct extension of that for a homogeneous plate; each
ply is treated as an individual homogeneous plate and, at the interface between any pair
of plies, a set ofsix homogeneous conditions representing equilibrium andcontinuity must
be satisfied. In a p-plied laminate, there are 6p arbitrary constants corresponding to each
harmonic, i.e. each combination of m and n, and these are explicitly derived by satisfying
all the relevant lateral surface conditions.

A special feature of this analysis is that all homogeneous surface conditions (which
include the interface conditions in laminates) are satisfied identically.
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In the eigenvalue problems of free vibration or buckling, a closed form characteristic
equation (in determinant form, of order 6p) is obtained for each combination of In and Ii

Each such equation yields an infinite number of eigenvalues, each one of them representing
a different "thickness mode". The first of these is generally referred to as a "flexural mode"
and it is only this mode which thin plate theory can identify and yield approximate results
for. In many buckling problems one ofthe flexural modes is the primary mode of instability

In thin plate theory, only w(x, y) is given freedom. In Mindlin's, ou/oz(x•.v) and iJvfcz(x. y)
and in Reissner's, Mx(x, y) and M y(x, y) are also given freedom. In the present exact analysis
u, D, w at every point are given freedom. Correspondingly for free vibration, thin plate
theory, Reissner-Mindlin analyses and the exact solution respectively yield one, three and
an infinite number doubly infinite sets of eigenvalues.

As the number of variables in orthotropic plates or laminates is large, detailed study of
the effects of individual variables on the physical aspects of the problems, or on the errors
due to thin plate assumptions, are not undertaken; but some broad conclusions are drawn
from the numerical results for an example of orthotropy. The properties of this material
are listed in Table 1. Some numerical results are also presented for three-ply laminates
with identical top and bottom plies; the relative values of the moduli are the same in all
the plies, i.e. (Ex :Ey:Ez :Exy :Exz :Eyz :Gxy :Gxz :G).z) are identical.

TABLE l. ORTHOTROPIC PROPERTIES ASSUMED IN EXAMPLES

EyfEx = 0·543103
Exy/Ex = 0·23319
Ey,fEx = 0·098276
G,,/Ex = 0·159914

E,fEx = 0·530172
E,,/Ex = 0·010776
Gxy/Ex = 0·262931
Gy,/Ex = 0·26681

These properties correspond (0 Aragonite
crystals [II].

GOVERNING EQUATIONS OF THREE-DIMENSIONAL ELASTICITY

The equations of equilibrium in terms of displacements for a homogeneous orthotropic
plate can be written in Cartesian co-ordinates as

02 02 02

EXOX2+GXYoy2+Gxz OZ2

02

(Exy+Gxy) oxoy

a2

(Exz +Gxz)ax az

iY
(Exy+Gxy)ox oy

a2 a2 a2

GXY ax2 +Eyoy2 +GyZ az2

02

(Eyz +Gyz)oy az

iJ2
(Eyz +Gyz)oy DZ

a2 02 82

Gxz ox2 +GyZ Dy2 +Ez[i;Z

(2)
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where
{O} is a (3 x 1) null matrix, and {f} is a (3 x 1) matrix.

Further,

(a) {f} =: {O} with no body forces;
(b) {f} - p{ ii iJ w} for motion with no body forces other than inertia forces,

( - p{ ii i3 w} pQ2{UVw}, for simple harmonic oscillations with frequency Q);
(c) {f} = F{u v w}, for general applied stresses on edges; F is a function of local

stresses in the initial state and second order differential operators.
[F -(Px o2j8x2+Py82joy2) for an initial state of uniform strains ex, Sy and Uz = O.
In homogeneous plates this corresponds to uniform applied normal edge stresses
Px on x = 0, a and Pyon y = 0, b].

Conditions (a), (b) and (c) can be applied together.

SIMPLY SUPPORTED RECTANGULAR PLATES
The edge boundary conditions for a simply supported rectangular plate may be specified

as:

(3)
v = 0,0, w = 0 andOn x = 0 and a; Ux

On y = 0 and b; f1 y = 0, W 0 and u = O.

This set ofedge conditions is identically satisfied by choosing u, v, win the following form;

[:] = hm~lJl [;:~;::s::::::::~] (4)

w X(Z) sin mnX sin nnY

where <P, !/J and Xare pure functions of Z; Considering simple harmonic oscillations and
uniform applied normal edge stresses, substitution of equation (4) in equation (2) yields
for each combination of m and n,

d3

ds+d6 L 2

-d7L

(5)

where,
d

L denotes the operator -,
dz

dl= El2_ExM2_GxyN2, d2 = GxZ' d3 = ::(Exy+Gxy)MN,

d4 (Exz+Gxz)M, ds E).,2 -EyN 2 GXyM 2, d6 GyZ '

d7 = (Eyz+Gyz)N, ds = E).,2_GxzM2_GyzN2, d9 Ez;

).,2 = 0, if the plate is static and also free of body forces (6a)

= Q2ph2jE, for simple harmonic oscillations (6b)

= (P",M2 + PyN
2)jE, for uniform applied normal edge stresses, P", on x = 0, a and

Py on y = 0, b (6c)
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For non-trivial solution of the homogeneous equation (5), the determinant of the \3< .j i

matrix on its left hand side must be zero. This yields

dz d6 d9 (U)3 +(d6 di +ill d~ tdl d6 ds +d] db £1 9 +dl ds d9 )(Ul"

+(ds di -2 d3 d4 d7 + d l d~ +d l £16 £Is +dz ds dstdl ds d9 d~ d9 lL:

tds(d j ds -d~) = 0 71

for each combination of m and n. The six roots of this equation define the six values of L
and correspondingly there are six arbitrary constants AU) (i 1,2, ... ,6). Each arbitrary
constant AU) is associated with an eigenvector {4>(i)l/JU)li)}. The eigenvectors depend on the
multiplicity of the roots and a procedure for finding them is discussed in [13]. The eigen··
vector corresponding to a non-repeating root L = c is

[

d4C(ds + d6 (
2

) c t(, d7 ~J

d7c(d) +:2
C2

.) c ('.~ d4 .2 Ae
cz

-(dl +d2c Hds td6 c )+d3

where A is an arbitrary constant. The sum of the six eigenvectors corresponding to the six
roots gives the total expression for fjJ, VI and x;

(8)

(9)

[

- ExMfjJ - ExyNl/J +EXZLXJ

-ExyMfjJ-EyNl/J+E~zLX sin mnX sin nnY

-Ex:MfjJ-EyzNl/J+EzLX_ ,

Gxy(NfjJ + Ml/J) cos mnX cos nn Y I
I

Gxz(MX+ L4» cos mnX sin nnY j
Gyz(NX+Ll/J) sin mnX cos nnY

'X) co

L L
m= j n= j

Using the stress-strain relationships (given in the notation) the following expression for
stresses are obtained.

O'x1
Uy

The set of six arbitrary constants for each (m, n) in 4>, l/J and X is used to satisfy the six lateral
surface conditions.

As mentioned earlier, extension of this analysis from homogeneous plates to laminates
is straightforward. Equations (4)49) are valid for individual plies, the appropriate quantities
for the jth ply being indicated by subscript j U= 1,2, ... , pl.

LATERAL SURFACE CONDITIONS

If the top and bottom surfaces are subjected to normal and shear stresses qz'(x, y),
qxz,(x, y), qyz,(x, y) and qz.(x, y), qxz.(x, y), qyz.(x, y) respectively, (they can be either static
loads or amplitudes offorcing functions with frequency 0), then the lateral surface conditions
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to be satisfied are:

for homogeneous plates;

at

at

Z = 0,

Z = 1,

(Jz q.,(x, y),

az = qZb(X, y),

't"XZ = qxz,(x, y),

't"XZ = qXZb(X, y),

't"yz = qyZ,(x, y)

't"yz = qYZb(X, y),
(10)

for laminates ;

at

at

Z = 0,

Z = 1,

aZ, = qz'(x, y),

azp qZb(X, y),

't"YZI qyz,(x, y),

't"yzp qYZb(X, y),

and at interfaces Z = Hh = 1,2, ... , p-1),

equilibrium conditions

and continuity conditions

The loadings are best expressed in double Fourier series,

(11)

ct) ct)

= I I
m= 1 n= 1

QZ,.",n sin mnX sin mrY

QXZt,mn cos mnX sin nn Y

QYZ"",n sin mnX cos nn Y

Q'b,,,,n sin mnX sin nn Y

QXZb,,,,n cos mnX sin nn Y

QYZb,mn sin mnX cos nnY

(12)

Then, satisfaction ofthe lateral surface conditions, equations (10) or (11), leads to a set of6p
simultaneous equations for each combination of m and n. These can be put in the following
form.

(a) For homogeneous plates;

QZt,mn

QXZt,mn

[[R(O)]] Q)'Zt,mn

[R(l)] {A} =
QZb,rnn

(13)

QXZb,mn

QYZb.mn
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(b) For three-ply laminates;

[R(O)J 1

[R(HdJl

[S(H 1)Jl

[0]

[OJ

[OJ

[0]

-[R(H dJz
[S(Hl)]z

(R(H Z)]2

- [S(Hz)]z

[OJ

[OJ

[OJ

[OJ

[R(Hz)h

[S(ll z)h
[R(1)h

(14)

(c) For multi-ply laminates;
Equation (14) is extended in a straightforward manner and symbolically,

[CHB} {Q} (14a)

where [C] is a square matrix made up of [R], [S] and null matrices, {B} is a column matrix
consisting of {A }/s, and {Q} is the load matrix.

In the foregoing equations,

{A "' . = j At I)A(Z) A(6l}.
iJ l .. " .J'

[

1(l) l(Z) .. ]16)]
[R(Z)]j = J(1) ]<Z) . .. ]<6)

K(l) K(2) ... K(6) j

[H) = (-ExzMljJ-EyzNt/I+EzLX)H)

Jm = (Gxz[MX+LcP])(i)

K(i) = (Gyz[NX+Lt/I])(i),

[

cP(1) ljJ(2) ...

[S(Z)]j = t/I(l) t/I(2) .,.

Xll ) X(2)

and [0] is a (3 x 6) null matrix. In the above equations, superscripts denote the correspond
ing eigenvectors and subscripts the corresponding plies. It is simple to modify equation (13)
or (14) to include any displacement conditions on the exterior lateral surfaces.

In non-homogeneous problems, i.e. in those problems for which the right hand side of
equation (13) or (14) is not zero, results can be evaluated by summing infinite series whose
individual terms are known explicitly by solution of equation (13) or (14), to the desired
accuracy by retaining sufficient number of terms. In case of homogeneous problems the
determinant (order 6p) of the square matrix on the left hand side of equation (13) or (14)
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must be zero and this is the characteristic equation for the corresponding (m, n) combina
tion.

PLATE UNDER UNIFORM NORMAL STATIC LOAD ON TOP SURFACE

Consider a plate loaded only on the top surface by an uniformly distributed normal
static load qo so that,

16qo
Qz = --2' m and n odd

t ...." mnn

= 0, m or n even (15)

The scheme for computation is:
(i) Determine the roots of equation (7) for each ply, for each (m, n).

(ii) Find the eigenvectors, taking into account any multiplicity of roots.
(iii) Solve equations (13) or (14) for each (m, n) to determine the arbitrary constants.
(iv) Sum the series (4) and (9) for the displacements and stresses, retaining sufficient

terms to achieve the desired degree of accuracy.
Numerical results are presented in Tables 2-4 for a homogeneous plate and a

three-ply laminate whose material properties are indicated in Table 1. In Table 2, exact,
Reissner and thin plate [12] values of O"x,max' O"y,max' 'xz,max and Wmax are given for homo
geneous plates with alb = 0·5, 1 and 2, hla = 0·05, 0·1 and 0·14. In Table 3, the O"x, O"y,

'XI and W distributions across the thickness for a 14 per cent thick homogeneous square
plate are given. In Table 4, effects of modular ratio between plies (fJ) are presented for three
ply square laminates with identical top and bottom plies.

The following observations can be made from the data in Tables 2-4.
(i) Thin plate theory underestimates maximum deflection. The errors in both maxi

mum stresses and maximum deflections predicted by thin plate theory, increase as plate
thickness increases. Deflections are more inaccurate than stresses.

(ii) Even for quite thick plates Reissner's theory predicts the deflections almost exactly,
but for stresses it does not appear to be distinctly superior to thin plate theory.

(iii) The thin plate and Reissner's direct stress distributions across thickness (Table 3) are
only slightly different from the true distributions.

(iv) Modular ratio between plies has significant effect on the errors in thin plate theory
for laminates. Mostly errors increase with increasing moduli of outer plies.

It was also observed that the number of terms needed to maintain a given level of
accuracy increases as plate thickness increases. To maintain 0·1 per cent accuracy, homo
geneous square plates with hla = 0·05, 0·1 and 0·14 require retention of terms up to
m( = n) = 25,87 and 167 respectively. That is, the significance of the higher harmonics of
loading increases with increasing thickness. Finally, from Table 3 one confirms that the
mid-surface is not really a neutral surface.

FREE VIBRATION

In this case the exterior lateral surfaces are stress free and therefore,

(16)
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TARLE 2. DEFLECTIONS AND STRESSl, l"i !!UMU(;I,NEOI .,

h/a
Present

exact
analysis

Reissner's
theory

Thill
plate

theory

"() error
in thin
rlatl'

values

Present
exaet

analysis
Reissner's

theory

rhm
plate

theory

errol

thin
platl'
valuc~

0·05 -21,542 -·21,542 21.201 158 262·67 262·07 262·26 \i·16
O·lO -1408·5 -1408-4 13251 ··5·92 65·975 65-379 65·564 ---0-62
0·14 -387·23 - 387·27 - 344·93 lo·n 33·862 33·265 11-451 12 i

0·05 - 10,443 -10,442 10,246 - 1·89 /44·31 143-87 144·39 ().\J(;

0·10 -688·57 ~688·37 -640·39 ..·7·00 36·021 35·578 36·098 021
0·14 -191·07 -191·02 -166·70 12.75 18·346 17·906 18-417 0·39

U'fl

0·05 -2048·7 -2047·9 1988·1 --2·96 40·657 40·477 40·860 OSO
0·10 -139·08 -138·93 -124·26 ··10·66 10·025 9·8460 10·215 190
0·14 -39·790 .. 39·753 ..- 32·345 18·71 5·0364 4·8603 52118 i4k

qo: normal stress on top surface (z = 0); tv: deflection of central point (X }' = Z = (l·5); 0, and 0,. normal
stresses at centre of top surface (X = y 0·5. Z = 0); r,,: shear stress at centre of an edge (X ~. O. y Z () 5);

elastic moduli are as per Table 1.

Substitution of equation (16) in equation (13) [or (14)J makes the latter homogeneous and
for non-trivial solution of the problem, the determinant of the square matrix (6p x 6p) on
the left hand side must be zero. For each (m, n), simultaneous solution of this characteristic
equation along with equation (7) yield an infinite number of frequencies, each correspond
ing to a different thickness mode.

Typical numerical results are presented in Tables 5-8. In Table 5 the first 8 exact eigen
values along with the 3 by Mindlin's theory (/(2 = 5/6) and one by thin plate analysis are
given for mh/a = 0·1, 0·2, ... ,0·5 and nh/b 0·1, 0·2, ... ,0·5. In Table 6, the stress and
displacement distributions across thickness for a homogeneous plate are given for
mh/a = nh/b 0·3. Table 7 gives the relative magnitudes of maximum stresses and dis·
placements for antisymmetric thickness modes. In Table 8 the flexural mode eigenvalues
for various {3's are tabulated for three-ply laminates with identical top and bottom plies.
From the data obtained the following observations are made.

(i) It is confirmed that thin plate theory frequencies are higher than true values.
The errors increase with increasing mh/a or nh/b.

(ii) For homogeneous plates, all the 3 eigenvalues given by Mindlin's theory are close
to the corresponding exact values.

(iii) Thin plate and Mindlin's stress and displacement distributions across thickness
are significantly different from the true distributions. For the flexural modes the deviations
increase with mh/a or nhjb.

(iv) Complexity of the stress and displacement distributions across thickness increases
for higher order thickness modes.
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ORTHOTROPIC PLATES UNDER UNIFORM SURFACE LOAD

(J,jqo 'xxlqo

I~ error %error
Present Thin in thin Present Thin in thin
exact Reissner's plate plate exact Reissner's plate plate

analysis theory theory values analysis theory theory values

0-5

79·545 79·337 79·121 -0·53 14·048 14·114 --14-154 0-75
20·204 20·001 19-780 -2·\0 -6-9266 -7·0611 -7·1328 2·98
10-515 10·312 10·092 -4·02 -4·8782 -5·0445 - 5·1050 4·65

1-0

87·080 86·921 86-487 -0·68 -10-873 -10-864 -10-972 0-91
22-210 22·048 2J.622 -2-65 -5-3411 -5·4267 -5·5642 4·18
11·615 11-453 11-031 -5-03 -3-7313 -3·8741 -3·9860 6·83

2-0

54-279 54·134 53-838 -0-81 6·2434 -6·2191 -6·4175 2-79
13-888 13-743 13·460 -3·08 2-9573 - 3-0524 -3·2402 9·57
7-2794 7·1358 6-8671 -5-66 1-9987 -2·1428 -2-3175 15-95

(v) As the order of the thickness modes increases, the influences of transverse stresses
increase_

(vi) Modular ratio between plies has significant effect on the error in flexural frequency
due to thin plate assumptions and this error increases with increasing moduli of outer
plies. Density ratios have only slight effect for small m and rl.

TABLE 3. VARIATIONS ACROSS THICKNESS IN HOMOGENEOUS ORTHOTROPIC PLATES UNDER UNIFORM NORMAL LOAD
ON TOP SURFACE

w(Z)/w(O-5) (Jx(Z)f(Jx(O) (J}.(Z)j(Jy(O) Txz(Z)jtxz(0-5)

Thin plate Thin plate Thin
Z True Thin True and True and True plate and

distribulion plate distribution Reissner distribution Reissner distribution Reissner
theory theories theories theories

0 1·0000 1·0 1-0 1-0 1-0 1·0 0 0
0-1 1·0005 1-0 0·7849 0-8 0·7914 0-8 0-4992 0·36
0·2 1·0007 1-0 0·5801 0-6 0-5888 0-6 0-7325 0-64
0·3 1·0007 1·0 0·3832 0·4 0·3906 0-4 0·8906 0-84
0-4 1·0004 1·0 0-1914 0·2 0-1954 0-2 0-9789 0-96
0-5 1-0 1-0 -0-0023 0 -0·0016 0 1-0 1-0
0-6 0-9994 1-0 -0·1869 -0·2 -0·1921 -0·2 0·9540 0·96
0-7 0·9986 1-0 -0-3786 -0-4 -0·3874 -0-4 0-8388 0-84
0-8 0·9976 1·0 -0·5755 -0·6 -0·5856 -0-6 0·6492 0·64
0-9 Q.9964 1-0 -0-7803 -0-8 -0-7882 -0-8 0·3758 0-36
1·0 0·9949 1·0 -0·9954 -1·0 -0·9968 1·0 0 0

Variations ofw, (Tx and (Tv along X Y = 0·5 and 'xx along X = 0, Y = 0·5. Elastic moduli are as per Table 1_
alb = I, h/a = 0·14.
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TABLE 4. DEfLECTIONS AND STRESSf'S IN rrlREE

Present exact analysis

Ii = Ex/Ex, 5 10 I';
---._-----

-------~-------~_._.. - ~--_ .._.._---_.-._-_.-

lvExZilhq" - 688·58 -258·97 15938 J21·72 640·3,)

(Jx/qo:

Top ply at top surface 36·021 60·353 65·332 66·787 .JMl98
Top ply at interface 28·538 46·623 48·857 48·299 28·878
Mid ply at upper interface 28·538 9·3402 4·9030 .J·2379 28·878
Mid ply at lower interface - 28-454 -9·2845 -4·8600 --3·2009 28·878
Bottom ply at interface - 28·454 -46-426 -48·609 -48·028 28·878
Bottom ply at bottom surface - 35·937 - 60·155 - 65·083 -66·5D -- 36·098

(J)'No:

Top ply at top surface 22·210 38-491 43·566 46·424 21-622
Top ply at interface 17·669 30·097 33-413 34·955 17297
Mid ply at upper interface 17·669 6·1607 3-4995 2·4941 17297
Mid ply at lower interface -17·631 -6·0574 - 3-3669 -- 2·3476 - 17297
Bottom ply at interface -17·631 - 30·322 33-756 - 35·353 --- 17·297
Bottom ply at bottom surface - 22·172 -38·715 -43·908 -- 46·821 21622

!XZi1qo

At upper interface -2·4029 - 3·7194 - 3·9285 - 3·9559 20031
At mid surface -5·3411 - 4·3641 - 4·0959 - 3·96311 - 55642
At lower interface -1·9826 -- 3·2675 -3·5154 - 3-5768 2·0031

I/o: normal stress on top surface (z = 0); IV at centre X = ~. = Z = 0·5, (Jx and (J)' on .-\ O~ y.= 0·5 and
Tn on X = 0, Y = 0·5; elastic moduli of all plies as per Table 1. Top and bottom plies are identical. h].il n·,
h2 /h = 0·8, alb = I, h/a = 0·1.

BUCKLING

The problem of buckling of simply supported'homogeneous plates is formally identical
10 that of free vibrations, except that the eigenvalue ). should be interpreted according to
equation (6c) instead ofequation (6b), as for example in Table 5. As already stated, only the
flexural mode eigenvalues are of significance in many buckling problems. The present
analysis can be directly extended for laminates which are initially in a state of uniform
strains Gx , Gy and (Jz = 0 throughout. Otherwise, a three-dimensional analysis of the initial
state will be involved and also the governing differential equation will be complicated by the
presence of variable terms (local stresses). The required initial state of uniform direct strains
can be realised in experiments by compressing by pairs of smooth rigid edge blocks moving
towards each other without rotation. This initial state is equivalent to one of direct stresses
Px ' Py- uniform within and on the edge of each ply, such that the quantities (Fx Px ·-+

J - J - J J

Fxy Py), (Fxy Px _+FyPy) are independent of j. In thin or moderately thick laminates, small
J J ) j J J

deviations from this condition at the edges, can be ignored by invoking Saint-Venant's
principle and the present analysis can stilI be applied to obtain satisfactory results.

Numerical results are presented in Fig. 2 and Tables 9 and 10 for plates and laminates
loaded by stresses PXj on sides x = 0 and a only. As such, (FXjPx) and (FXYpx) are the same
for all plies. In other words, {F,)FxyJ are the same for all plies and (PX1 :PX2 : .•• )

(l/F
X1

: 1/Fx2 :' •• ). The least buckling stress Px,crmj for any given plate dimensions and rn is
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ORTHOTROPIC LAMINATES UNDER UNIFORM SURFACE LOAD

Thin plate theory ~-;; error in thin plate theory

5 10 15 5 10 15

-216·94 -1l8·77 81·768 -7·00 -16·23 -25-48 32·82

61·141 66·947 69·135 0·21 1·31 2·47 3·52
48·913 53·557 55·308 1-19 4·91 9·62 14·51
9·7826 5·3557 3·6872 1·19 4·74 9·23 13·88

-9·7826 - 5·3557 -3·6872 1·49 5·36 10·20 15·19
-48·913 - 53-557 - 55·308 1·49 5·36 10·18 15·16
-61·141 -66·947 69·135 0·45 1·64 2·86 3-94

36·622 40·099 41·410 -2·65 -4·86 -7·96 10·80
29·297 32·079 33·128 -2·11 -2·66 -3·99 5·23

5·8595 3·2079 2·2085 -2·11 -4·89 -8·33 11·45
-5·8595 - 3-2079 -2·2085 -1·89 -3·27 -4·72 5·93

-29·297 -32·079 33·128 -1·89 -3·38 -4·97 -6·29
-36·622 -40·099 --41·410 -2·48 -5·41 -8·67 11·56

-3·3860 -3·7075 3·8287 -16·64 -8·96 -5·63 3·22
-4·5899 -4·3666 -4·2825 4·18 5·17 6·61 8·04
-3·3860 -3·7075 3·8287 1·03 3·63 5·46 7·04

realised with only n = 1. For a given h/b, the buckling stress parameter k", achieves a
constant value for all integral values of a/b, and the corresponding m = a/b. That is, when
a/b is integral the plate buckles into square panels. This value of k", is also its asymptotic
value.

In Fig. 2 the buckling stress parameter k", is plotted against a/b for various h/b's. In
Table 9 the asymptotic.values ofthe buckling stress parameter k", are given for homogeneous
orthotropic plates with h/b = 0-05,0·1 and 0·2. In Table 10, the asymptotic value of k", is
given for three-ply laminates. From these data the following observations on buckling of
orthotropic plates and laminates may be made.

(i) Thin plate theory gives optimistic values for the buckling stress, the errors increas
ing rapidly as the thickness increases.

(ii) Mindlin theory can yield accurate buckling stresses even for thick homogeneous
plates.

(iii) Modular ratio between plies has significant effect on the errors in buckling stress
due to thin plate type assumptions. The errors increase as moduli of outer plies are in
creased.

The stress and displacement distributions are similar to those of the corresponding
flexural mode in vibration.

CONCLUDING REMARKS

An exact three-dimensional unified analysis has been established for the bending,
vibration and buckling of simply supported, thick, orthotropic, rectangular plates and
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TAIlLE 5. EJGENVAJ,liI::-' Hd+, ,Jill' .,

~_.~"._-_.,~"._ .._~-,~,,,~ ..~._ ..-.-"

Exact analysis

mil nil

"
I-A I-S* fl-S !l-A' III 11a

0·1 ().I 0·04742 0·21697 0·39405 1·3077 J.(iS30 2·272::
0·] {)·2 {H0329 0·34501 {)56242 13331 17160 ~26{)O
{)·I 03 {)·1888J {)·49530 0·76004 "3765 IX115 2':~427
0·1 {)·4 0·29690 0·65190 0·969{)I 1-4372 1·9306 1·224:'
0·1 0·5 {)42124 O·8107J 11825 1·51.13 2·0664 22097
0·2 {)·I 0·11880 ()·3515() 0·67278 1·42()5 J·080S L2SJ7
()2 0·2 ()·J6942 043382 0·78796 1·4316 l7509 2·245)
()·2 0·3 0·24753 ()·55201 0·94433 1·4596 18523 2·2.~ is
02 04 0·34755 ()·689S7 1·I23J j·5068 !974'J 2·2~06
()·2 0·5 0·46428 ()·83699 1·3!42 1·57!9 2· 1122 2~ 105
O·} O·! 0·21804 0·50291 ()·97278 1·5771 17334 ~"2396
0·3 {)·2 {)·26244 ()·56047 J·()573 !·565! Hn95 ~·2346

0·3 0·3 0·332(){) 0·65043 1·1814 !5737 !92W) 2<~274
()·3 04 ()·42242 0·76415 1·3321 1·6049 2·()54f> 221%
0·3 0·5 0·52956 0·89360 !-4994 1·6566 2· !92.·~ 2·2 'j I
OA 0·1 ()·33189 ()·65908 1·2795 17179 1·8548 22146
()·4 ()·2 0·37066 0·70277 1·3453 1·6940 1944" ..},2 '~

()-4 ().J 043225 0·77334 14463 1·6923 2·0534 l·22X:)
04 0-4 0·51342 0·86667 1·5736 17129 2,176' ]-225"
0-4 0·5 0·6!092 0·97769 1719l 1·7542 2·2262Hk

\ 2\104""
0·5 01 0·45265 0·81720 1·5890 18056 2·066'; ~,2.~9":,

0·5 0·2 0-48680 0·85223 16425 1·7974 2· 1344 A~<':3B6

0·5 0·3 054!60 0·90962 17266 1·7999 2·22xg ].'2,~XO

0·5 {)-4 0·61465 (J·98732 1.818711.' 1·8350"'" 22394H!·\ 1<~41 ~m. j

0·5 {)·5 ()·70338 1·0824 !·855911••' ! .959611.' 2·2468"'" ~4665"'"

* Pure thick· twist modes.
Elastic moduli as per.Jable !.
Eigenvalue; = OJ ph2/E x for free vibrations

,,/Px:M 2;f:x for buckling under uniform !lormal edge stresses P, O!l .X 0 and ii.

A and S denote modes which are antisymmetric and symmetric about mid-plane respectively.

laminates. The solution is in series form and each term in it is explicitly defined by a set of
simultaneous equations. Thus it is easy to sum the series to any desired degree of accuracy
in non-homogeneous problems like plates under static or dynamic loads on lateral surfaces.
while in homogeneous problems like free vibration or buckling from a state of uniform
strain closed form characteristic equations are obtained to define natural frequencies or
buckling stresses. This type of solution was made possible by the choice of v o=: 0, instead of
L XY = 0, as one of the "simple" support conditions along the straight edge x const.
In fact equation (4) is only one of the twelve sets of series providing the general solution [14}
of the governing differential equation. If the condition L XY = 0 is to be satisfied the series in
equation (4), should be augmented by additional series. Then the terms are no longer
explicitly determinable nor is the characteristic equation in closed form. There is consequent
loss of elegance and simplicity and enormous increase in computation, An example of an
isotropic square plate has been worked out [14J to examine whether the two modes of
defining 3 simple support would lead to significantly different results. The v = 0 condition
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AND BUCKLING OF HOMOGENEOUS PLATES

Mindlin's analysis
Thin plate %error in

II-A* Ill-A
theory thin plate

IV-S* V-S I-A I-A values

2·5479 3·2636 0,04740 1·3159 1·6646 0·04967 4-74

2·5604 3·3043 0-10317 1·3411 1·7305 0·11200 8·44

2·5824 3·3678 0·18839 1-3841 1·8306 0·21537 14·07

2·6145 304497 0-29588 1·4445 1·9560 0·35993 21·23

2·6565 3·5458 OAI927 1·5204 H001 0·54574 29-56

2·6264 3·2760 0·11873 1·4285 1·6921 0·13538 13·95
2·6334 3·3179 0-16918 1-4393 1·7655 0·19866 17·26
2·6481 3·3828 0·24692 1·4671 1·8715 0·30289 22·37

2·6727 3·4661 0·34628 1·5142 2·0002 0·44802 28·91
2-7081 3·5633 OA6201 1-5792 2·1456 0·63418 36·59
2·7383 3·2967 0·21776 1·5857 1-7450 0·27789 27-45

2·7392 3·3409 0-26192 1·5727 1·8341 0·34176 30·22
2·7457 304085 0·33101 1·5813 1·9480 0·44699 34-64
2·7614 304942 0·42066 1·6127 2·0796 0·59313 40AI
2-7882 3·5933 0·52671 1-6648 2·2250 0·78011 47·31
2·8756 3·3261 0·33110 1·7266 1·8657 0·47734 43·82
2·8695 3·3743 0·36955 1·7022 1·9587 0·54152 46·09
2·8668 3·4463 0·43056 1·7006 2·0716 0·64750 49·80
2·8730 3·5356 0·51084 1·7218 2-2003 0·79466 54-78
2·8905 3·6373 0·6071(i 1-7638 2·3419 0·98269 60·85
3·0334 3·3648 OA5087 1·8150 2·0770 0·73374 62·10
3·0174 3-4204 OA8463 1·8067 2·1475 0·79809 63·95
3·0040 3·4991 0·53877 1·8095 2·2459 0·90459 67·02
3-0000 3·5931 0·61083 1·8292 2·3639 1·0526 71·25
3-0082 3·6979 0·69828 1·8665 2·4965 1·2416 76·52

is found to predict smaller central deflections, lower by 7·4 per cent, and 9·4 per cent for
10 per cent and 14 per cent thick plates.

The effect of thin plate assumptions is to increase the stiffness of the structure and there
fore yield lower deflections, higher flexural frequencies and optimistic buckling stresses.
The errors increase as the thickness increases, and in vibrations, also with increasing order of
the mode as mor n increases. In laminates the modular ratios between plies have very signifi
cant effects on the errors due to thin plate type of assumptions and these errors increase
with increasing moduli of outer plies. In vibrations thin plate theory yields only one doubly
infinite spectrum of frequencies.

In orthotropic plates, the errors due to thin plate assumptions depend strongly also on
the extent of orthotropy, i.e. the relative values of various elastic moduli. The errors in thin
plate theory increase as the relative magnitudes of transverse elastic flexibility constants
(Fz, Fxz , FyZ' I/GxZ' l/Gyz) increase relative to inplane constants (Fx, Fy, Fxy , I/Gxy). In
isotropic plates, it was possible to define a "thin plate". For example tolerating 1 per cent
inaccuracy, a plate could be called "thin" if it is under 5 per cent thick when subjected to
uniform loading or when {(mh/a)2+(nh/b}2} ::;; 1/250 for free vibrations [7,8]. Because of
the large number of parameters involved, it is rather difficult to define the term "thin" for
orthotropic plates.
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TABLE 6. VARIATIONS OF STRESSES AND DISPLACEMENTS ACROSS THICKNESS FOR ,\ !I"Sj, ,.

PLATE IN FREE VIBRATION

ax ", ", c
Ix: [\:Z 'xv

",(0) " ,(0) " ,lOA) T,,(O) Tx ,(0·5) I,.,(0·5) litO! 1'(0) \'API
~----_..,,----

~- --"_._---'-, ._-

0
(a) Thin plate theory and the three thickness-modes of Mindlin's lheor\

1·0 1·0 ].() () () ,I' j-O 10
().J 0·8 0·8 0·8 0·36 0·36 () x n·" !
0·2 0·6 0·6 0-6 0·64 0·64 0·6 0·(> 1·(1
0·3 OA 0·4 04 0-84 0·84 0-4 O~ j,O
OA 0·2 0·2 ()·2 ()·96 0·96 0·2 U·' 1·0
0·5 () () 0 10 10 0 1·0

(b) Exact theory
First anti symmetric thickness mode (1-A)

0 1·0 j.() 0 I·U () () 1·0 I·U l·U
0-] 0·7134 0·7539 1-5685 0·7360 0·3943 03X35 0·6963 o· 7644 j.()()54
0·2 0·4871 0·5396 2·0482 0·5163 (J-6738 (1·6632 0·4650 ()·5532 J·0083
0·3 0·3028 0-3479 1·7657 0·3278 0-8595 08534 0·2838 () 3595 1()090
0-4 0·1450 ()·1704 1·0 Q·1591 0·9655 09638 0·1343 0·1770 1·01(J2
Q·5 Q 0 0 (J 1·0 :0 0 0 j·(JI03

Second anti symmetric thickness mode (II-A I
0 J.O )·0 0 j·O 0 1·0 J·O 10
(J·l 0·9511 0·9509 1-3346 0·9512 0·3090 0·3090 0·9511 0·951Q 16·658
0·2 0·8090 Q-8088 1·8798 0·8092 ()·5878 (1·5878 0·8090 0·8089 30·755
0·3 0·5878 0·5875 1·7099 ()·5880 0·8090 0·8090 0·5878 0·5877 41.92 7

OA 0-3090 0·3089 1·0 0·309J (L')jj 1 0·9511 0·3090 0·3090 49·09'
0-5 0 0 0 (I 10 ]0 () 0 "156 "

Third antisymmetric thickness mode (lII-A i
0 1·0 ].C) Q I·() () () J·O I·U 1-0
0·1 0-9837 0·9516 1-3098 ()·9789 02942 0·3021 0·9922 0-9721 0·902'
0·2 0·8573 Q-8111 1·8614 0·8501 0·5719 0·5804 0·8698 0·8399 (J·n!!,
0·3 0·6333 0·5905 J·7037 Q·6263 Q·7992 0·8045 0·6450 0·6167 O·64l9
0·4 ()·3361 ()·3109 J.() 0·3320 ()·9482 ()·9497 Q·3431 03262 (}SS,:;3
(J·5 0 0 0 II 10 1·0 0 II i)·52()('

(x.! t y ;:

First symmetric thickness mode (l-S) t x .t0·2) ',AO·2)

0 1·0 j·O (l j·U () 0 I·(l JO I·()
0·1 (l·9790 1·0130 0·3868 [·0415 07609 0·7614 0·9890 1·0074 0·8112
0·2 0-9636 ]·0228 0·6777 1·0723 1·0 1·0 0·9811 H) 131 O·b14/{
0·3 0·9533 1·0297 0-8804 1·0925 0·8661 0·8656 0·9757 1·0170 OA129
OA 0·9472 1·0337 J·O 1 1060 0-4919 OA915 0·9727 10194 (J·2Un
0·5 0·9453 1·0350 1·0395 I·J 101 U 0 0·9717 1·0202 II

Second symmetric thickness mode (II-S)
0 j.() 1·0 0 I·() 0 0 1·0 (·0 1·0
0·1 1·0077 1·0062 0·3602 j·0091 (l·7241 Q·7336 1·0073 10120 (J·8362
0·2 1·0139 J·0114 0·6526 1·0165 10 [·0 1·0131 10221 0·6489
0·3 1·0184 j.()152 0·8680 \·(J220 0·8968 (J·8887 1·0173 1·0296 0·4431
(J-4 1·(J211 1·0176 J.Q 1·0254 0·5197 O·51n 1·(J199 I ()342 ()·2248
Q5 j·0221 1·0184 1·0444 1·0265 0 () 1·0208 1·(JJ58 ()

EJastic moduli as per Table J; mhja = nlz/h = (J·3.

The improved approximate theories like Reissner's and Mindlin's are good even for
quite thick plates for specific purposes_ For example, Reissner's theory predicts deflections
accurately, while Mindlin's theory yields accuracte frequencies for the first 3 antisymmetric
thickness modes of free vibrations.
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TABLE 7. RELATIVE MAGNITUDES OF MAXIMUM STRESSES AND DISPLACEMENTS FOR ANTISYMMETRIC THICKNESS MODES
OF HOMOGENEOUS ORTHOTROPIC PLATES IN FREE VIBRATION

(Jy.max Gz,max ~y.max 'txz.max r yZ,max Uma:lt vrnax

(Jx,max ax,max (lx,max (Jx,max (Jx,max wmax wmax

Thin plate theory (I-A) 0·6142 0 0·4272 0·2932 0·2023 0-4712 0·4712
Mindlin's theory

Thickness mode I-A 0·7693 0 0·4937 0·3306 0·2644 0·2290 0·3550
Thickness mode II-A 0·0174 0 0·1563 0-4716 0·3906 40·27 18·93
Thickness mode III-A 0·4804 0 0·3698 1·032' 0·5694 6·908 4·160

Exact theory
Thickness mode I-A 0·7278 0·0301 0-4759 0·2827 0·2290 0·2677 0·3727
Thickness mode II-A 0·0565 0·0002 0·1396 0·6128 0·5355 41·62 22·26
Thickness mode III-A 0·8624 0·1657 0·5336 0·4407 1·310 1·898 3·680

mh/a = "h/b = 0·3.

TABLE 8. FLEXURAL MODE EIGENVALUES FOR FREE VIBRATIONS OF THREE-PLY
ORTHOTROPIC LAMINATES

Density %error in
ratio {3 = Ex ,/Ex2 Exact value Thin plate thin plate
pdp2 value value

1 1 0·047419 0·049666 4·74
1 2 0·057041 0·060584 6·21
1 5 0·077148 0·085333 10·61
1 10 0·098104 0·115328 17·56
1 15 0·112034 0·138994 24·06
3 15 0·094548 0·117471 24·25

Elastic moduli of all plies as per Table 1. Top and bottom plies are
identical. hdh = 0·1, h2/h = 0·8, mh/a = "h/b = 0·1. Eigenvalue =
nJp2h2/EX2'

Br----r------r-----r---~

6~---I1/b

4 <----,,/

~
ASYMPTOTIC~
VALUES I ---"-I--------j

3·039. ALSO THIN PLATE
ANALYSIS NEGLECTING
h/b EFFECT S

2·966 I

2·770 +-- -+ -1
2·210

--------- --------

432
alb

Variation of buckling stress parameter kx with h/b and alb for plate loaded on x = 0, a.
kx = (Pxc<=/E)(l2/rr2 )(b/W.

FIG. 2.
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TABLE 9. ASYMPTOTIC k, FOR BUCKLING OF HOMOGENEOUS ORTIIOTRliFli.
PLATES UNDER UNIFORM NORMAL STRESS P, ON EDGES X = 0 .~ ',D

1Ji/,

0·05
0·1
0·2

Exact
theory

2·966
2·770
2·210

Mindlin's
theory

2·965
2·768
2·204

Thin plate
theory

.1·039
3·039
3·039

IlOcrrorm
thin plate

values

2-46
') I
37-5

,'. 12 P, ('h)'ElastIc modulI as per Table 1. /( .~ ~,.'.'n. - .

, rr 2 E, h

TABLE 10. ASYMPTOTIC k x FOR BUCKLING OF THREE-PLY
ORTHOTROPIC LAMINATES FROM AN INITIAL STAfE OF

UNIFORM STRAIN

fJ Exact value Thin plate
value

"0 error in
thin plate

value

I 2·770 3·039 9·7
2 3·330 3·768 13·2
5 4·046 4·984 23-2

IO 4·200 5·852 39·3
15 4·037 6·263 55. I

Elastic moduli of all plies are as per Table I. Top
and bottom plies are identical.

fJ = Ex,/E" = Ex,/E"

Ii = P.l:.crm;/Ex, 11 0 1.2..Il

k, = 121l(b/h)2/rr'

h,/h = 0·1, h2 ih = 0·8. hih = 0·1.

Thus, a three-dimensional elasticity solution is necessary when both stresses and
displacements are required in non-homogeneous problems or for establishing the full
spectrum of modes in free vibrations. The analysis presented here is for general orthotropic
laminates with arbitrary properties for each ply, except in buckling when the relative elastic
moduli must be identical for all the plies. Analysis of sandwich plates with core having only
shear rigidity is a special case ofthe above analysis. Tetragonal, cubic and isotropic materials
are special cases of orthotropic materials and the present analysis is applicable.
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A6cTpaKT-,ll,aeTcli 06heAHHeHHbdl TOlfHbIH aHaJlH3 CTaTIlKIl Il JJ,IlHaMIlKIl HeKOToporo KJlaCCa TOJlCTblX
CJlOHCTbIX IIJIaCTHKOB. BblBOJJ,HTCll TpexMepHall, JIIlHeHHall TeopHli MaJIbiX )J,e$opMaUHH, B paMKax TeopHIl
ynpyrocTii JJ,Jlll H3rH6a, KOJle6aHHIi: H nOTepH YCTOH'IHBOCTH, cBo6oJJ,HO onepTbiX TOJlCTblX OpToTponHblx
npSlMoyrOJIbHblX IIJIaCTHH H CJIOHCTblX IIJIaCTHKOB. PeUJeHHe llBJllleTCll $opMaJlbHO TO'lHblM H npHBOJJ,HT
K HecJlOlKHblM 6ecKoHe'lHbIM pllJJ,aM )J,Jlll HanpSllKeHHH H nepeMemeHHIi: npH H3rH6e, BblHYlKll,eHHbiM
KOJle6aHHSlM H 3all,alfaM THfia "6aJlKa-KOJIOHHa". ,ll,Jlll cBo60JJ,Hb1X lKe KOJle6aHHH H 3aJJ,alf YCTOHlfHBOCTH
pelIIeHHe npHBOJJ,IlT K xapaKTepllcTHlfecKHM ypaBHeHllllM B 3aMKHyToM BIlAe. B cny'lae cBo60JJ,Hblx
KOJle6aHHH OJlaCTIlHOK, ope)J,JIaraeMbill. aHanH3 JJ,aeT TpOHHbIll. 6ecKOHe'lllblil CoeK'Tp JJ,Jlll '1aCTOT, BMecTe
TOJlbKO ABoilHoro 6ecKoHe'lHoro cneKTpa, B paMKax TeopHIl TOHKHX nnaCTHHOK HJlH TpeX JJ,BOHHbiX.
6ecKoHelfHblx COeKTpOB OpH aHaJlll3e Tlloa PelkcHepa Il MHH)J,JIHHa. ,ll,JJlI nJlaCTHH H CJlOIlCTblX IIJIaCTHKOB
)J,aIOTCSI HeKOTopble '1HCneHHble pe3YJIbTaTbI. CpaBHeHlle pe3YJlbTaTOB TeopllH TOHKHX nJlaCTliHOK Il TeopHeH
PeHccHepa H MIlHtlJIHHa Cpe3YJlbTaTaMH opell,JlOlKeHHblMIl Bpa60Te )J,aeT HeKOTOble BalKHpble 3aKJIIO'IeHHll
OTHOCIlTenbHO BalKHOCTIl H 3$$eKTOB npeJJ,nonolKeHIIH, C)J,eJIaHHbiX B 0pll6JIHlKeHHblx Teopllllx.


